

Blacktown Boys' High School

2020

HSC Trial Examination

Mathematics Extension 2

General

Instructions

• Working time – 3 hours

• Reading time – 10 minutes

- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided for this paper
- All diagrams are not drawn to scale
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Total marks: Section I – 10 marks (pages 3 – 7)

- 100
- Attempt Questions 1 10
- Allow about 15 minutes for this section
- Section II 90 marks (pages 8 14)
 - Attempt Questions 11 16
 - Allow about 2 hours and 45 minutes for this section

Assessor: X. Chirgwin

Student Name: _____

Teacher Name:

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2020 Higher School Certificate Examination.

- Blank Page -

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1–10.

Q1 Which of the following is equivalent to i^{2020} ?

- A. *i*¹⁰⁰
- B. $(i^{11})^5$
- C. $(i^{21})^5$
- D. *i*¹⁰

Q2 Given that $z = 5e^{\frac{i\pi}{6}}$, which expression is equal to $(\bar{z})^{-1}$?

- A. $\frac{1}{5}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$
- B. $5\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$
- C. $\frac{1}{5}\left(\cos\frac{\pi}{6} i\sin\frac{\pi}{6}\right)$
- D. $5\left(\cos\frac{\pi}{6} i\sin\frac{\pi}{6}\right)$

BBHS 2020 HSC Mathematics Extension 2 Trial Examination

Q3 The Argand diagram shows the complex number $e^{i\theta}$.

Which of the following diagrams best shows the complex number $ie^{-i\theta}$?

- Q4 Which of the following statement is true?
 - A. $\forall x \in R, \exists y \in R \text{ such that } xy = 10$
 - B. $\forall x \in R, \exists y \in R \text{ such that } y = x^2$
 - C. $\exists x \in R$, such that $\forall y \in R$, xy = 10
 - D. $\exists x \in R$, such that $\forall y \in R$, $y = x^2$
- Q5 The following slogan is used at a particular swimming centre.

"If you are a strong swimmer, then you are unlikely to drown."

Which of the following statements is logically equivalent to the above slogan?

- A. If you are unlikely to drown, then you are a strong swimmer.
- B. If you are a strong swimmer, then you are likely to drown.
- C. If you are not a strong swimmer, then you are likely to drown.
- D. If you are likely to drown, then you are not a strong swimmer.

Q6 Using a suitable substitution $\int_{a}^{b} x^{9} e^{3x^{10}} dx$, where *a* and *b* are real constants, can be written as

A.
$$\int_{a}^{b} e^{3u} du$$

B.
$$\frac{1}{10}\int_{a^{10}}e^{3u}du$$

C.
$$\frac{1}{30} \int_{30a^9}^{30b^9} e^u du$$

D.
$$\frac{1}{3} \int_{3a^{10}}^{3b^{10}} e^u du$$

BBHS 2020 HSC Mathematics Extension 2 Trial Examination

- Q7 Given the vectors $\underline{a} = 2\underline{i} 5\underline{j} + 10\underline{k}$ and $\underline{b} = 3\underline{i} \underline{j} 5\underline{k}$, the vector projection of \underline{a} onto \underline{b} is A. $-\frac{13}{\sqrt{43}} \left(2\underline{i} - 5\underline{j} + 10\underline{k} \right)$ B. $-\frac{13}{43} \left(2\underline{i} - 5\underline{j} + 10\underline{k} \right)$ C. $-\frac{39}{\sqrt{35}} \left(3\underline{i} - \underline{j} - 5\underline{k} \right)$ D. $-\frac{39}{35} \left(3\underline{i} - \underline{j} - 5\underline{k} \right)$
- Q8 A particle undergoing simple harmonic motion in a straight line has an acceleration of $\ddot{x} = 100 25x$, where x is the displacement after t seconds.

Where is the centre of motion?

- A. x = 10
- B. x = 5
- C. x = 4
- D. x = 2
- Q9 A particle is moving in a straight line with velocity at any particular time given by $v = 2 \tan^{-1} x$

Which of the following represents the acceleration of the particle?

A.
$$\frac{2}{\sqrt{1-x^2}}$$

B. $\frac{4}{1+x^2}$
C. $\frac{4 \tan^{-1} x}{1+x^2}$

D. $-2 \operatorname{cosec}^2 x$

Let $r(t) = (1 - \sqrt{a} \cos t) i + (1 - \frac{1}{b} \sin t) j$ for $t \ge 0$ and $a, b \in \mathbb{R}^+$ be the path Q10

of a particle moving in the Cartesian plane.

The path of the particle will always be a circle if

- А. $a^2b = 1$
- Β. $ab^2 = 1$
- С. ab = 1
- D. a + b = 1

End of Section I

BBHS 2020 HSC Mathematics Extension 2 Trial Examination

Section II

90 Marks Attempt Questions 11–16 Allow about 2 hours and 45 minutes for this section

Answer each question on a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Questio	on 11	(15 marks)	Use a SEPARATE writing booklet.	
a)	Let z_1 where	$= 1 - 2i$ and $z_2 = a$ and b are real numbers.	3 + 4i. Express the following in the form $a + bi$ mbers.	
	i)	$z_1 - z_2$		1
	ii)	$z_1 \times \overline{z_2}$		1
	iii)	Show that $\frac{2+i}{z_2}$.	$-\frac{z_1}{5i}$ is a real number.	2

- Let z = x + yi, where x and y are real numbers, and $2z + \overline{z} = 21 8i$. b) 2 Find the values of *x* and *y*.
- Write $-\sqrt{3} + 3i$ in modulus argument form. c) i) 2
 - Hence express $(-\sqrt{3} + 3i)^5$ in the form a + bi, where a and b are ii) 2 real numbers.

d) Solve for x and y, where x and y are real numbers, given that 2 i)

 $(x + iy)^2 = 9 - 40i$

Hence or otherwise, solve $z^2 - 7z + 10 + 10i = 0$. ii) 3

End of Questions 11

(15 marks) Use a SEPARATE writing booklet. Question 12

a) Find

i)
$$\int \frac{2dx}{x^2 - 8x + 21}$$
 2

ii)
$$\int x^2 \log_e x \, dx$$
 2

$$\int \frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}} dx = \log_e \sqrt{e^{4x} + 1} - x + c$$

c) i) Find the values of A, B and C such that 2

$$\frac{6x^2 + 7x - 3}{(x - 5)(x^2 + 1)} = \frac{A}{x - 5} + \frac{Bx + C}{x^2 + 1}$$
ii) Hence find $\int \frac{6x^2 + 7x - 3}{(x - 5)(x^2 + 1)} dx$ 2

d) i) Show that
$$\sin(A + B) + \sin(A - B) = 2 \sin A \cos B$$
 1
ii) Hence evaluate $\int_{0}^{\frac{\pi}{2}} \sin 9x \cos 6x \, dx$ 3

BBHS 2020 HSC Mathematics Extension 2 Trial Examination

Questi	on 13	(15 marks) Use a SEPARATE writing booklet.	
a)	The co <i>C</i> (−4,	bordinates of three points are $A(4, -2, -3)$, $B(0, -1, 4)$ and $4, 1)$.	
	i)	Find \overrightarrow{AB} .	1
	ii)	The points A , B and C are the vertices of a triangle. Prove that this triangle has a right angle at B .	2
	iii)	Find the exact length of the hypotenuse of this triangle.	1
b)	i)	Show that the points $L(-5, 6, -5)$, $M(7, -2, -1)$ and $N(10, -4, 0)$ are collinear.	2
	ii)	Hence find the ratio in which M divides LN .	1

Sketch the region in the complex plane showing the inequalities c) 3 $1 \le |z - 1 + i| \le 2$ and $\frac{3\pi}{4} \le \arg(z - 1 + i) \le \pi$

Question 13 continues on next page

End of Questions 12

Question 13 (continued)

d) Let $z = \cos \alpha + i \sin \alpha$, where α is an angle in the first quadrant. On the Argand diagram the point *P* represents *z*, the point *Q* represents $i\sqrt{3}z$ and the point *R* represents $z + i\sqrt{3}z$.

2

1

1

1

- i) Explain why *OPRQ* is a rectangle.
- ii) Show that $|z + i\sqrt{3}z| = 2$
- iii) Show that $\arg(z + i\sqrt{3}z) = \alpha + \frac{\pi}{3}$
- iv) By considering the imaginary part of $z + i\sqrt{3}z$, deduce that $\sin \alpha + \sqrt{3} \cos \alpha = 2 \sin \left(\alpha + \frac{\pi}{3}\right)$

BBHS 2020 HSC Mathematics Extension 2 Trial Examination

Question 14 (15 marks) Use a SEPARATE writing booklet.

- a) A particle moving in a straight line has an acceleration given by $\ddot{x} = x^2 5$ 3 where its displacement is *x* metres from the origin. Initially the particle is at the origin and has velocity 5 ms^{-1} . Find the velocity of this particle when it is 3 metres to the right of the origin.
- b) A particle is moving in a straight line. Initially, the particle is 9 metres to the right of the origin, moving with a velocity of $-8\sqrt{3} ms^{-1}$. The displacement x is given by $x = A\cos(2t + \alpha) + 5$, for some constants A and α .
 - i)Prove that the particle is undergoing simple harmonic motion.2ii)Find the values of A and α where A > 0 and $0 < \alpha < \frac{\pi}{2}$.2iii)Find the period of this motion.1iv)When does the particle first reach the centre of motion.1v)Find the maximum speed of this particle.1
- c) Prove that $\log_5 14$ is irrational. 2
- d) Prove using mathematical induction for integers $n \ge 2$, 3
 - $n^{n+1} > n(n+1)^{n-1}$

End of Questions 14

End of Questions 13

- **Question 15** (15 marks) Use a SEPARATE writing booklet.
- a) The sides of this equilateral triangle are 2 units long and represented by the vectors a, b and c as shown. 3

b) Use the substitution
$$t = \tan \frac{x}{2}$$
 to find the value of a , given that

$$\int_{0}^{\frac{\pi}{2}} \frac{a}{5+3\sin x + 4\cos x} dx = 1$$

4

1

1

1

2

- c) i) Determine the equation of the line vector \tilde{r} , given that it passes through the point (-3, 5, -1) and is parallel to the line joining P(3, 1, -1) and Q(5, 0, 2).
 - ii) Show that the point (7, 0, 14) lies on this line.

d) i) Show that
$$(1 - \sqrt{x})^{n-1}\sqrt{x} = (1 - \sqrt{x})^{n-1} - (1 - \sqrt{x})^n$$

ii) If
$$I_n = \int_0^1 (1 - \sqrt{x})^n dx$$
 for $n \ge 0$, show that
 $I_n = \frac{n}{n+2} I_{n-1}$, for $n \ge 1$

iii) Hence evaluate I_4

End of Questions 15

-13-

BBHS 2020 HSC Mathematics Extension 2 Trial Examination

Question 16 (15 marks) Use a SEPARATE writing booklet. a) i) If p > 0 and q > 0, show that $p + q \ge 2\sqrt{pq}$

ii) If
$$p + q = 1$$
, show that $\frac{1}{p} + \frac{1}{q} \ge 4$ 2

1

4

_

 b) The tide can be modelled using simple harmonic motion. The depth of water in a harbour on a particular day is 7.8 metres at low tide and 12.4 metres at high tide. Low tide is at 8: 15 *am* and high tide is at 2: 30 *pm* on the same day.

If a ship requires a minimum of 9.1 metres to leave the harbour safely. Find between what times the ship can leave safely on that day.

- c) Let ω be the complex root of the polynomial $z^7 = 1$ with the smallest possible argument.
 - i) Explain why $\omega^7 = 1$ and $1 + \omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6 = 0$. 1
 - ii) Let $\alpha = \omega + \omega^2 + \omega^4$ and $\beta = \omega^3 + \omega^5 + \omega^6$. 2 Show that $\alpha + \beta = -1$ and $\alpha\beta = 2$.
 - iii) Hence write a quadratic equation whose roots are α and β . 1
 - iv) Show that $\alpha = -\frac{1}{2} + \frac{\sqrt{7}}{2}i$ and $\beta = -\frac{1}{2} \frac{\sqrt{7}}{2}i$ 1
 - v) Write down ω in modulus-argument form, and show that 3

$$\cos\frac{4\pi}{7} + \cos\frac{2\pi}{7} - \cos\frac{\pi}{7} = -\frac{1}{2}$$
 and $\sin\frac{4\pi}{7} + \sin\frac{2\pi}{7} - \sin\frac{\pi}{7} = \frac{\sqrt{7}}{2}$

End of Paper

Student Name:

Multiple Choice Answer Sheet

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9
		$A \bigcirc$	В 🔴	С 🔾	D 🔾

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word 'correct' and drawing an arrow as follows.

	2020 Mathematics Extension 2 AT4 Trial So	lutions
Section 1		
Q1	$\begin{array}{l} \mathbf{A} \\ i^{2020} = 1 = i^{100} \end{array}$	1 Mark
Q2	$ \begin{aligned} \mathbf{A} \\ z &= 5e^{\frac{i\pi}{6}} \\ z &= 5\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \\ \bar{z} &= 5\left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right) \\ (\bar{z})^{-1} &= 5^{-1}\left(\cos\left(-\frac{\pi}{6}\right) - i\sin\left(-\frac{\pi}{6}\right)\right) \\ (\bar{z})^{-1} &= \frac{1}{5}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \end{aligned} $	1 Mark
Q3	C $e^{i\theta}$ shown is in the second quadrant $e^{-i\theta}$ is reflection along the <i>x</i> -axis, which would be in the 3 rd quadrant $ie^{-i\theta}$ is rotating 90° anticlockwise	1 Mark
Q4	B A: For all real numbers x, there exist some y such that $xy = 10$, this is not true for $x = 0$ B: For all real numbers x, there exist a real number y such that $y = x^2$ C: There exist some real number x, such that for all real numbers y, xy = 10. There is not a single number for x that multiplies with every real numer for y to give a results of 10. D: There exist some real number x, such that for all real numbers y, $y = x^2$. There is not a single number for x that squared gives every real number for y.	1 Mark
Q5	D "If you are a strong swimmer, then you are unlikely to drown." The contrapositive is the logically equivalent statement. "If you are likely to drown, then you are not a strong swimmer."	1 Mark
Q6	$B = \int_{a}^{b} x^{9} e^{3x^{10}} dx$ Let $u = x^{10}$ $du = 10x^{9} dx$ $x = b, u = b^{10}$ $x = a, u = a^{10}$ $I = \frac{1}{10} \int_{a}^{b} 10x^{9} e^{3x^{10}} dx$ $I = \frac{1}{10} \int_{a^{10}}^{b^{10}} e^{3u} du$	1 Mark

Q7 D)	1 Mark
V	/ector projection	
	$\frac{b}{b}$	
	D·b∼ ∼	
=	$=\frac{2 \times 3 + (-5) \times (-1) + (10 \times -5)}{2} (3i - i - 5k)$	
	$3^2 + (-1)^2 + (-5)^2$	
=	$=-\frac{35}{35}(3i - j - 5k)$	
Q8 C		1 Mark
X	$c = -n^2(x-c)$	
x x	z = -25(x - 4)	
Q9 C		1 Mark
v	$y = 2 \tan^{-1} x$	
ÿ	$t = v \frac{dv}{dx}$	
ÿ	$r = 2 \tan^{-1} r \times \frac{2}{2}$	
	$\frac{1}{4} \tan^{-1} x = 1 + x^2$	
ÿ	$\dot{z} = \frac{4 \tan x}{1 + x^2}$	
	1 + 2	
Q10 B		1 Mark
x	$t = 1 - \sqrt{a} \cos t$	
с	$\log t = \frac{1}{\sqrt{a}}(1-x)$	
	$\frac{1}{1}$	
C	$u^{-1} = \frac{1}{a} (1 - x)^{-1}$	
У	$v = 1 - \frac{1}{L} \sin t$	
s	$\ln t = b(1 - y)$	
s	$\ln^2 t = b^2 (1 - y)^2$	
	$\cos^2 t + \sin^2 t = 1$	
1	$\frac{1}{2}$	
a	$\frac{1}{x^2}(1-x)^2 + b^2(1-y)^2 = 1$	
Т	his is a circle if	
1	$-h^2$	
a	- <i>v</i>	

Section 2		
Q11ai	$z_1 - z_2$	1 Mark
	= 1 - 2i - (3 + 4i)	Correct solution
	= -2 - 6i	
011		
Q11aii	$\begin{bmatrix} Z_1 \times Z_2 \\ -(1 - 2i) \times (2 - 4i) \end{bmatrix}$	1 Mark
	$= (1 - 2l) \times (3 - 4l)$ = 2 - 4i - 6i - 9	Correct solution
	-5 - 4i - 6i - 6 -5 - 10i	
Q11aiii	$2 + i z_1$	2 Marks
	$\frac{1}{z_2}$ $\frac{1}{5i}$	Correct solution
	2	
	$-\frac{2+i}{3} \times \frac{3-4i}{3} - \frac{1-2i}{3} \times \frac{5i}{3}$	1 Mark
	3 + 4i 3 - 4i 5i 5i	Rationalise the
	$=\frac{6-8l+3l+4}{2}-\frac{5l+10}{2}$	denominators
	$3^2 + 4^2 - 5^2$ 10 - 5i 5i + 10	
	$=\frac{10}{25}+\frac{10}{25}$	
	20 20	
	$=\frac{1}{25}$	
	= -	
	5	
011h	$27 \pm 7 - 21 - 8i$	2 Marks
QIID	2(x + yi) + x - yi = 21 - 8i	Correct solution
	3x + yi = 21 - 8i	concer solution
		1 Mark
	Match the real and the imaginary component	Expresses $2z + \overline{z}$ in real
	3x = 21	and imaginary
	x = 7	component
	y = -8	
011ci	Let $z = -\sqrt{3} + 3i$	2 Marks
Q110.		Correct solution
	$ z = \sqrt{(\sqrt{3})^2 + 3^2}$	
	$ z = \sqrt{12}$	1 Mark
	$ z = 2\sqrt{3}$	Finds the correct
		modulus or argument
	(-1) (-1)	
	$\arg(z) = \tan^{-1}\left(\frac{1}{-\sqrt{3}}\right)$	
	$arg(z) = \frac{2\pi}{2\pi}$	
	$a^{1}g(2) = 3$	
	() 7) 7	
	$-\sqrt{3} + 3i = 2\sqrt{3}\left(\cos\frac{2\pi}{2} + i\sin\frac{2\pi}{2}\right)$	
Q11cii	$-5 [-(2\pi 2\pi)]^5$	2 Marks
	$\left(-\sqrt{3}+3i\right)^{3} = \left 2\sqrt{3}\left(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\right)\right $	Correct solution
	Using De Moivre's theorem	1 Mark
	$(-\sqrt{3}+3i)^5 - (2\sqrt{3})^5 (\cos\frac{10\pi}{2} + i\sin\frac{10\pi}{2})$	Applies De Moivre's
	$(-\sqrt{3}+3i) = (2\sqrt{3}) (\cos \frac{3}{3}+i\sin \frac{3}{3})$	theorem correctly
	$(-\sqrt{3}+3i)^5 = 288\sqrt{3}\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)$	
	$\left(-\sqrt{3}+3i\right)^{5}=-144\sqrt{3}-432i$	

Q11di	$ (x + iy)^2 = 9 - 40i x^2 + 2xyi - y^2 = 9 - 40i $	2 Marks Correct solution	Q12b	$I = \int \frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}} dx$	3 Marks Correct solution
	Match up the real and imaginary component $x^2 - y^2 = 9$ (1) 2xy = 40	1 Mark Finds the correct values		Let $u = e^{2x} + e^{-2x}$ $du = (2e^{2x} - 2e^{-2x})dx$	2 Marks Correct primitive
	$y = -\frac{20}{x} \tag{2}$			$I = \frac{1}{2} \int \frac{2e^{2x} - 2e^{-2x}}{e^{2x} + e^{-2x}} dx$	1 Mark Correct integrand in
	$x^2 - \left(\frac{20}{x}\right)^2 = 9$			$I = \frac{1}{2} \int \frac{1}{u} du$	terms of <i>u</i>
	$x^{4} - 400 = 9x^{2}$ $x^{4} - 9x^{2} - 400 = 0$ $(x^{2} - 25)(x^{2} + 16) = 0$			$ \begin{bmatrix} I = \frac{1}{2} \ln u + c \\ I = \frac{1}{2} \ln e^{2x} + e^{-2x} + c I $	
	$(x^2 - 23)(x^2 + 16) = 0$ $x = \pm 5(\text{since } x \text{ is real})$ $y = \mp 4$			$I = \frac{1}{2} \ln \left \frac{e^{4x} + 1}{e^{2x}} \right + c$	
011dii	$x + iy = \pm(5 - 4i)$	2 Marks		$I = \frac{1}{2} (\ln(e^{4x} + 1) - \ln(e^{2x})) + c$	
QIIU	$z = \frac{7 \pm \sqrt{7^2 - 4 \times 1 \times (10 + 10i)}}{2 \times 1}$	Correct solution		$I = \frac{1}{2} (\ln(e^{4x} + 1) - 2x \ln(e)) + c$ $I = \frac{1}{2} (\ln(e^{4x} + 1) - 2x) + c$	
	$z = \frac{7 \pm \sqrt{9 - 40i}}{2 \times 1}$	2 Marks Makes significant		$I = \ln \sqrt{e^{4x} + 1} - x + c$	
	$z = \frac{7 \pm (3 - 4i)}{2}$ $z = \frac{7 + 5 - 4i}{2} \text{ or } \frac{7 - 5 + 4i}{2}$	1 Mark	Q12ci	$\frac{6x^2 + 7x - 3}{(x - 5)(x^2 + 1)} = \frac{A}{x - 5} + \frac{Bx + C}{x^2 + 1}$	2 Marks Correct solution
	$z = \frac{12 - 4i}{2} \text{ or } \frac{2 + 4i}{2}^2$	formula correctly		$A(x^{2} + 1) + (Bx + C)(x - 5) = 6x^{2} + 7x - 3$ Let x = 5	1 Mark Finds the correct value
012ai	z = 6 - 2i or 1 + 2i	2 Marks		$A(52 + 1) + (B \times 5 + C) \times (5 - 5) = 6 \times 52 + 7 \times 5 - 3$ 26A = 182	for A or B or C
	$\int \frac{1}{x^2 - 8x + 21}$	Correct solution		A = 7 Let $x = 0$	
	$= 2 \int \frac{dx}{(x^2 - 8x + 16) + 5}$	1 Mark Makes significant		$7 \times (0^{2} + 1) + (B \times 0 + C) \times (0 - 5) = 6 \times 0^{2} + 7 \times 0 - 3$ 7 - 5C = -3	
	$= 2 \int \frac{1}{(x-4)^2 + 5} = 2 \times \frac{1}{-1} \tan^{-1} \left(\frac{x-4}{-1} \right) + c$	progress		C = 2	
	$=\frac{2}{\sqrt{5}}\tan^{-1}\left(\frac{x-4}{\sqrt{5}}\right)+c$			Let $x = 1$ $7 \times (1^2 + 1) + (B \times 1 + 2) \times (1 - 5) = 6 \times 1^2 + 7 \times 1 - 3$ 14 - 4B - 8 = 10	
Q12aii	$I = \int x^2 \log_e x dx$	2 Marks		$\begin{array}{l} -4B = 4\\ B = -1 \end{array}$	
	$u = \log_e x \qquad v' = x^2$ $u' = \frac{1}{2} \qquad v = \frac{x^3}{2}$	1 Mark	Q12cii	$\int \frac{6x^2 + 7x - 3}{(x - 5)(x^2 + 1)} dx$	2 Marks Correct solution
	x 3 x^3 $(1 x^3)$	Applies integration by parts correctly		$= \int \left(\frac{7}{x-5} + \frac{-x+2}{x^2+1}\right) dx$	1 Mark Makes significant
	$I = \frac{1}{3} \log_e x - \int \frac{1}{x} \times \frac{1}{3} dx$ $I = \frac{x^3}{3} \log_e x - \frac{1}{3} \int \frac{1}{x^2} dx$			$= \int \frac{1}{x-5} dx + \int \frac{1}{x^2+1} dx + \int \frac{1}{x^2+1} dx$ $= 7 \ln x-5 - \frac{1}{\pi} \ln(x^2+1) + 2 \tan^{-1} x + c$	progress
	$I = \frac{x^3}{2} \log_e x - \frac{1}{2} \times \frac{x^3}{2} + c$		Q12di	$\sin(A+B) + \sin(A-B) = 2\sin A\cos B$	1 Mark
	$I = \frac{x^3}{3}\log_e x - \frac{x^3}{9} + c$			$LHS = \sin(A + B) + \sin(A - B)$ $LHS = \sin A \cos B + \sin B \cos A + \sin A \cos B - \sin B \cos A$ $LHS = 2 \sin A \cos B$	Correct solution
				LIIJ = 25IIIA(05D)	

Q12dii	$\int_{0}^{\frac{\pi}{2}} \sin 9x \cos 6x dx$	3 Marks Correct solution
	$=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}_{\pi}2\sin 9x\cos 6xdx$	2 Marks Correct primitive
	$=\frac{1}{2}\int_{0}^{\overline{2}}(\sin(9x+6x)+\sin(9x-6x))dx$	function 1 Mark
	$= \frac{1}{2} \int_{0}^{2} (\sin 15x + \sin 3x) dx$	Rewrite $\sin 9x \cos 6x$ in terms of $\sin 15x + \sin 3x$
	$= \frac{1}{2} \left[-\frac{1}{15} \cos 15x - \frac{1}{3} \cos 3x \right]_{0}^{2}$ = $\frac{1}{6} \left[\left(-\frac{1}{5} \cos \left(15 \times \frac{\pi}{2} \right) - \cos \left(3 \times \frac{\pi}{2} \right) \right) - \left(-\frac{1}{5} \cos (0) - \cos (0) \right) \right]$	511 104 + 511 54
	$=\frac{1}{6}\left(0 - \left(-\frac{6}{5}\right)\right)$	
	$=\overline{5}$	
Q13ai	$\overline{AB} = \left(-j + 4k\right) - \left(4i - 2j - 3k\right)$ $\overline{AB} = -4i + j + 7k$	1 Mark Correct solution
013aii		2 Marks
42000	$BC = \begin{pmatrix} -4i + 4j + k \\ -j - (-j + 4k) \end{pmatrix}$ $BC = -4i + 5j - 3k$	Correct solution
	$\overrightarrow{AB} \cdot \overrightarrow{BC} = \left(-4i + j + 7k\right) \cdot \left(-4i + 5j - 3k\right)$	1 Mark Finds the correct vector
	$\overrightarrow{AB} \cdot \overrightarrow{BC} = (-4) \times (-4) + 1 \times 5 + 7 \times (-3)$ $\overrightarrow{AB} \cdot \overrightarrow{BC} = 0$	for \overrightarrow{BC}
	$AB \perp BC$ \therefore The triangle has a right angle at B	
Q13aiii	Hypotenuse is AC	1 Mark
	$\overrightarrow{AC} = \begin{pmatrix} -4i + 4j + k \\ \cdots \end{pmatrix} - \begin{pmatrix} 4i - 2j - 3k \\ \cdots \end{pmatrix}$	Correct solution
	AC = -8i + 6j + 4k	
	$\begin{aligned} \overrightarrow{AC} &= \sqrt{(-6)^2 + 6^2 + 4^2} \\ \overrightarrow{AC} &= \sqrt{116} \\ \overrightarrow{AC} &= 2\sqrt{29} \end{aligned}$	
Q13bi	$\overline{LM} = (7i - 2j - k) - (-5i + 6j - 5k)$	2 Marks
	$\overrightarrow{LM} = 12i - 8j + 4k$	Correct solution
	$\overrightarrow{LM} = 4\left(3\underbrace{i}_{i} - 2\underbrace{j}_{i} + \underbrace{k}_{i}\right)$	1 Mark Finds \overrightarrow{LM} or \overrightarrow{MN}
	$\overline{MN} = \left(10\underbrace{i}_{i} - 4\underbrace{j}_{i}\right) - \left(7\underbrace{i}_{i} - 2\underbrace{j}_{i} - \underbrace{k}_{i}\right)$	
	$\overrightarrow{MN} = 3i - 2j + k$	
	$\frac{LM}{LM} = 4MN$ $\frac{LM}{LM}$ and $\frac{MN}{MN}$ are parallel and have <i>M</i> as a common point $\therefore L, M, N$ are collinear	
Q13bii	<i>M</i> divides <i>LN</i> in the ratio of 4: 1	1 Mark
1		correct solution

Q13div	$Im(z + i\sqrt{3}z) = Im\left[2\left(\cos\left(\alpha + \frac{\pi}{3}\right) + i\sin\left(\alpha + \frac{\pi}{3}\right)\right)\right]$ $Im(z + i\sqrt{3}z) = 2\sin\left(\alpha + \frac{\pi}{3}\right) (1)$ Also $Im(z + i\sqrt{3}z) = Im(z) + Im(i\sqrt{3}z)$ $Im(z + i\sqrt{3}z) = \sin\alpha + Im(i\sqrt{3}\cos\alpha - \sqrt{3}\sin\alpha)$ $Im(z + i\sqrt{3}z) = \sin\alpha + \sqrt{3}\cos\alpha (2)$ $\sin\alpha + \sqrt{3}\cos\alpha = 2\sin\left(\alpha + \frac{\pi}{3}\right)$	1 Mark Correct solution
Q14a	$\begin{aligned} \ddot{x} &= x^2 - 5 \\ \frac{d}{dx} \left(\frac{1}{2}v^2\right) = x^2 - 5 \\ \frac{1}{2}v^2 &= \frac{x^3}{3} - 5x + c \end{aligned}$ When $t = 0, v = 5, x = 0$ $\frac{1}{2} \times 5^2 = 0 - 0 + c$ $c = \frac{25}{2}$ $\frac{1}{2}v^2 = \frac{x^3}{3} - 5x + \frac{25}{2}$ $v^2 = \frac{2x^3}{3} - 10x + 25$ $v = \pm \sqrt{\frac{2x^3}{3} - 10x + 25}$ The condition $v = 5$ when $x = 0$ is satisfied by $v = \sqrt{\frac{2x^3}{3} - 10x + 25}$ When $x = 3$ $v = \sqrt{\frac{2 \times 3^3}{3} - 10 \times 3 + 25}$ $v = \sqrt{13} m/s$	3 Marks Correct solution 2 Marks Determines the correct <i>v</i> 1 Mark Finds <i>v</i> ² in terms of <i>x</i>
Q14bi	$x = A \cos(2t + \alpha) + 5$ $\dot{x} = -2A \sin(2t + \alpha)$ $\ddot{x} = -4A \cos(2t + \alpha)$ $\ddot{x} = -4(x - 5)$ $\ddot{x} = -2^{2}(x - 5)$ This is in the form $\ddot{x} = -n^{2}(x - c)$, where $n = 2, c = 5$ \therefore This is simple harmonic motion.	2 Marks Correct solution 1 Mark Correct differentiation of \dot{x} and \ddot{x}
Q14bii	When $t = 0, x = 9$ $A \cos \alpha + 5 = 9$ $A \cos \alpha = 4$ (1)	2 Marks Correct solution

	When $t = 0$, $x = -8\sqrt{3}$ $-2A \sin \alpha = -8\sqrt{3}$ $A \sin \alpha = 4\sqrt{3}$ (2) (1) ² + (2) ² $A^{2} \cos^{2} \alpha + A^{2} \sin^{2} \alpha = 64$ A = 8 (2) ÷ (1) $\frac{A \sin \alpha}{A \cos \alpha} = \frac{4\sqrt{3}}{4}$ $\tan \alpha = \sqrt{3}$ $\alpha = \frac{\pi}{3}$	1 Mark Finds the value of A or α
Q14biii	$T = \frac{2\pi}{n}$ $T = \pi$	1 Mark Correct solution
Q14biv	Particle is at the centre of motion when $x = 5$ $8 \cos \left(2t + \frac{\pi}{3}\right) + 5 = 5$ $\cos \left(2t + \frac{\pi}{3}\right) = 0$ $2t + \frac{\pi}{3} = \frac{\pi}{2}$ $t = \frac{\pi}{12}$ The particle first reach the centre of motion at $\frac{\pi}{12}$ seconds	1 Mark Correct solution
Q14bv	$\dot{x} = -16\sin\left(2t + \frac{\pi}{3}\right)$ Max speed is 16 m/s	1 Mark Correct solution
Q14c	Proof by contradiction: Assume that $\log_5 14$ is rational $\log_5 14 = \frac{p}{q}$ Where $p, q \in Z$ with no common factor except 1 $q \log_5 14 = p$ $\log_5 14^q = p$ $14^q = 5^p$ <i>LHS</i> is even, <i>RHS</i> is odd. This is not possible. $\therefore \log_5 14$ is irrational	2 Marks Correct solution 1 Mark Attempts proof by contradiction
Q14d	RTP: $n^{n+1} > n(n+1)^{n-1}$ for $n \ge 2$ 1. Prove statement is true for $n = 2$ $LHS = 2^{2+1}$ $RHS = 2 \times (2+1)^{2-1}$ LHS = 8 $RHS = 6LHS > RHS\therefore Statement is true for n = 2$	3 Marks Correct solution 2 Marks Makes significant progress

	2. Assume statement is true for $n = k$ (k some positive integer ≥ 2) $k^{k+1} > k(k+1)^{k-1}$ (since k is positive) $\frac{k^k}{(k+1)^{k-1}} > 1$ 3. Prove statement is true for $n = k + 1$ i.e. $(k+1)^{k+1+1} > (k+1)(k+1+1)^{k-1+1}$ $(k+1)^{k+2} > (k+1)(k+2)^k$ $(k+1)^{k+1} > (k+2)^k$ $(k+1)^{k+1} > (k+2)^k$ $LHS = \frac{(k+1)^{k+1}}{(k+2)^k} \times \frac{(k+1)^{k-1}}{k^k}$ From assumption $\left[\frac{k^k}{(k+1)^{k-1}} > 1 \rightarrow \frac{(k+1)^{k-1}}{k^k} < 1\right]$ $LHS > \frac{(k+1)^{k+1+k-1}}{[k(k+2)]^k}$ $LHS > \frac{(k+1)^{k+1+k-1}}{[k(k+2)]^k}$ $LHS > \frac{((k+1)^{2k})^k}{[k(k+2)]^k}$	1 Mark Proves initial case	Q15b	$t = \tan \frac{x}{2}$ $dt = \frac{1}{2} \sec^2 \frac{x}{2} dx$ $dt = \frac{1}{2} (1+t^2) dx$ $dx = \frac{2}{1+t^2} dt$ $x = \frac{\pi}{2} \qquad t = 1$ $x = 0 \qquad t = 0$ $\int_0^{\frac{\pi}{2}} \frac{a}{5+3 \sin x + 4 \cos x} dx = 1$ $a \int_0^1 \frac{1}{5+3(\frac{2t}{1+t^2}) + 4(\frac{1-t^2}{1+t^2})} \times \frac{2}{1+t^2} dt = 1$ $2a \int_0^1 \frac{1}{5(1+t^2) + 6t + 4(1-t^2)} dt = 1$ $2a \int_0^1 \frac{1}{5+5t^2 + 6t + 4} - 4t^2 dt = 1$ $2a \int_0^1 \frac{1}{t^2 + 6t + 9} dt = 1$ $2a \int_0^1 \frac{1}{(t+3)^2} dt = 1$ $2a \left[\frac{(t+3)^{-1}}{-1} \right]_0^1 = 1$ $-2a \left(\frac{1}{1+3} - \frac{1}{0+3} \right) = 1$ $-2a \times -\frac{1}{12} = 1$ a = 6	 4 Marks Correct solution 3 Marks Makes significant progress 2 Marks Finds the primitive function 1 Mark Shows the integrand in terms of t
	$LHS > \left(\frac{k^2 + 2k}{k^2 + 2k}\right)^k$ $LHS > \left(\frac{k^2 + 2k}{k^2 + 2k} + \frac{1}{k^2 + 2k}\right)^k$ $LHS > \left(1 + \frac{1}{k^2 + 2k}\right)^k$ $LHS > 1$ $\therefore \frac{(k+1)^{k+1}}{(k+2)^k} > 1$		Q15ci	$\overline{PQ} = \begin{pmatrix} 5\\0\\2 \end{pmatrix} - \begin{pmatrix} 3\\1\\-1 \end{pmatrix}$ $\overline{PQ} = \begin{pmatrix} 2\\-1\\3 \end{pmatrix}$ $r = \begin{pmatrix} -3\\5\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-1\\3 \end{pmatrix}$	1 Mark Correct solution
Q15a	This is true by mathematical induction for all positive integers $n \ge 2$ $a \cdot (a + b + c)$	3 Marks	Q15cii	$7 = -3 + 2\lambda$ $\lambda = 5$ $\binom{7}{0}_{14} = \binom{-3}{5}_{-1} + 5\binom{2}{-1}_{3}$	1 Mark Correct solution
	$ \begin{array}{l} \overset{a}{=} (\overset{a}{=} \overset{a}{=} \overset{a}{=} \overset{c}{=} \overset{c}{$	Correct solution 2 Marks Makes significant progress 1 Mark Applies distributive properties	Q15di	$RHS = (1 - \sqrt{x})^{n-1} - (1 - \sqrt{x})^n$ $RHS = (1 - \sqrt{x})^{n-1} (1 - (1 - \sqrt{x}))$ $RHS = (1 - \sqrt{x})^{n-1} (1 - 1 + \sqrt{x})$ $RHS = (1 - \sqrt{x})^{n-1} \sqrt{x}$ $RHS = LHS$	1 Mark Correct solution

Q15dii	$I_n = \int_0^1 (1 - \sqrt{x})^n dx$	3 Marks Correct solution	Q16aii	$\frac{1}{p} + \frac{1}{q} = \frac{p+q}{pq}$	2 Marks Correct solution
	$u = (1 - \sqrt{x})^{n} \qquad v' = 1$ $u' = -\frac{n}{2\sqrt{x}} (1 - \sqrt{x})^{n-1} \qquad v = x$ $l_{n} = \left[x(1 - \sqrt{x})^{n} \right]_{0}^{1} - \int_{0}^{1} \left(-\frac{n}{2\sqrt{x}} (1 - \sqrt{x})^{n-1} \times x \right) dx$ $l_{n} = \left[1(1 - \sqrt{1})^{n} - 0(1 - \sqrt{0})^{n} \right]_{0}^{1} + \frac{n}{2} \int_{0}^{1} \left(\sqrt{x} (1 - \sqrt{x})^{n-1} \right) dx$ $l_{n} = 0 + \frac{n}{2} \int_{0}^{1} \left(\sqrt{x} (1 - \sqrt{x})^{n-1} \right) dx$ $l_{n} = \frac{n}{2} \int_{0}^{1} \left((1 - \sqrt{x})^{n-1} - (1 - \sqrt{x})^{n} \right) dx$ $l_{n} = \frac{n}{2} (l_{n-1} - l_{n})$ $l_{n} + \frac{n}{2} l_{n} = \frac{n}{2} l_{n-1}$ $\left(1 + \frac{n}{2} \right) l_{n} = \frac{n}{2} l_{n-1}$ $l_{n} = \frac{\frac{n}{2} l_{n-1}}{l_{n}}$	2 Marks Makes significant progress 1 Mark Applies integration by parts correctly		From part i) $p + q \ge 2\sqrt{pq}$ $\frac{p + q}{2} \ge \sqrt{pq}$ $\frac{(p + q)^2}{4} \ge pq$ $\frac{4}{(p + q)^2} \le \frac{1}{pq}$ $\frac{4}{(p + q)^2} \times (p + q) \le \frac{1}{pq} \times (p + q)$ $\frac{4}{(p + q)^2} \times (p + q) \le \frac{1}{pq} \times (p + q)$ $\frac{\frac{4}{p + q}}{p + q} \le \frac{p + q}{pq}$ $\frac{p + q}{p + q} \ge \frac{4}{p + q}$ $\frac{p + q}{p + q} \ge \frac{4}{p + q}$ $\frac{1}{p} + \frac{1}{q} \ge \frac{4}{1}$ $\therefore \frac{1}{p} + \frac{1}{q} \ge 4$	1 Mark Makes significant progress
	$(1 + \frac{1}{2})$ $I_n = \frac{n}{2}I_{n-1} \times \frac{2}{n+2}$ $I_n = \frac{n}{2}I_{n-1} \times \frac{2}{n+2}$ $I_n = \frac{n}{n+2}I_{n-1}$		Q16b	Period $T = 2 \times (14:30 - 8:15) = 12.5$ hours Amplitude $\frac{1}{2}(12.4 - 7.8) = 2.3$ metres Since the motion is simple harmonic $\ddot{x} = -n^2 x$ $T = \frac{2\pi}{n}$	4 Marks Correct solution 3 Marks Finds the correct <i>t</i> values
Q15diii	$ \begin{bmatrix} I_0 = \int_0^1 dx \\ I_0 = [x]_0^1 \\ I_0 = 1 \\ I_1 = \frac{1}{3} I_0 \\ I_1 = \frac{1}{3} \\ I_2 = \frac{2}{4} \times I_1 \\ I_2 = \frac{1}{6} \\ I_3 = \frac{3}{5} \times I_2 \\ I_3 = \frac{1}{10} \\ I_4 = \frac{4}{6} \times I_3 \\ I_4 = \frac{1}{15} \end{bmatrix} $	2 Marks Correct solution 1 Mark Finds the correct value of I_0		$n = \frac{2\pi}{12.5}$ $n = \frac{4\pi}{25}$ Using when the tide is 10.1 metres (centre of motion), and when $t = 0$, it's low tide $x = 10.1 - 2.3 \cos\left(\frac{4\pi}{25}t\right)$ Minimum depth required is 9.1 metres. $9.1 = 10.1 - 2.3 \cos\left(\frac{4\pi}{25}t\right)$ $-1 = -2.3 \cos\left(\frac{4\pi}{25}t\right)$ $\frac{10}{23} = \cos\left(\frac{4\pi}{25}t\right)$ $\frac{10}{23} = \cos\left(\frac{4\pi}{25}t\right)$ $\frac{4\pi}{25}t = \cos^{-1}\frac{10}{23}, 2\pi - \cos^{-1}\frac{10}{23}$ $\frac{10}{25} = 10$	2 Marks Finds the correct motion equation 1 Mark Correct period or amplitude
Q16ai	$ \begin{pmatrix} \sqrt{p} + \sqrt{q} \\ p - 2\sqrt{pq} + q \ge 0 \\ p + q \ge 2\sqrt{pq} \\ \end{pmatrix} $	1 Mark Correct solution		$t = \frac{25}{4\pi} \left(\cos^{-1} \frac{10}{23} \right), \frac{25}{4\pi} \left(2\pi - \cos^{-1} \frac{10}{23} \right)$ $t = 2.2301 \dots, 10.2698 \dots$ $t \approx 2h14min, 10h16min$ 8: 15am + 2h14min = 10: 29am 8: 15am + 10h16min = 18: 16 = 6: 31nm	

Q16ci	$\omega \text{ is a complex root of } z^7 = 1$ $\therefore \omega^7 = 1$ $z^7 - 1 = (z - 1)(z^6 + z^5 + z^4 + z^3 + z^2 + z + 1)$ Since ω is a complex root, $\omega \neq 1$. So ω must be a root of $z^6 + z^5 + z^4 + z^3 + z^2 + z + 1 = 0$ $\therefore 1 + \omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6 = 0$	1 Mark Correct solution
Q16cii	$\begin{split} \alpha &= \omega + \omega^2 + \omega^4 \text{ and } \beta = \omega^3 + \omega^5 + \omega^6 \\ \alpha + \beta &= \omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6 = 0 \\ \text{Since } 1 + \omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6 = -1 \\ \alpha + \beta &= -1 \\ \alpha + \beta &= -1 \\ \alpha + \beta &= (\omega + \omega^2 + \omega^4)(\omega^3 + \omega^5 + \omega^6) \\ \alpha &= \omega^4 + \omega^6 + \omega^7 + \omega^5 + \omega^7 + \omega^8 + \omega^7 + \omega^9 + \omega^{10} \\ \alpha &= \omega^4 + \omega^6 + 1 + \omega^5 + 1 + \omega + 1 + \omega^2 + \omega^3 \\ \alpha &= 1 + \omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6 + 2 \\ \alpha &= 2 \end{split}$	2 Marks Correct solution 1 Mark Shows either the correct sum or the product
Q16ciii	$x^{2} + \frac{b}{a}x + \frac{c}{a} = 0$ $\alpha + \beta = -\frac{b}{a}$ $\alpha\beta = \frac{c}{a}$ $x^{2} + x + 2 = 0$	1 Mark Correct solution
Q16civ	$x = \frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times 2}}{2 \times 1}$ $x = \frac{-1 \pm \sqrt{-7}}{2}$ $x = \frac{-1 \pm \sqrt{7}i}{2}$ $\therefore \alpha = -\frac{1}{2} + \frac{\sqrt{7}}{2}i, \beta = -\frac{1}{2} - \frac{\sqrt{7}}{2}i$	1 Mark Correct solution
Q16cv	$z^{7} = 1$ $z = \left(\cos\frac{2\pi k}{7} + i\sin\frac{2\pi k}{7}\right), k = 0, 1, 2, 3, 4, 5, 6$ Since ω has the smallest possible argument, $\omega = \cos\frac{2\pi}{7} + i\sin\frac{2\pi}{7}$ $\alpha = \omega + \omega^{2} + \omega^{4}$ $\alpha = \left(\cos\frac{2\pi}{7} + i\sin\frac{2\pi}{7}\right) + \left(\cos\frac{4\pi}{7} + i\sin\frac{4\pi}{7}\right) + \left(\cos\frac{8\pi}{7} + i\sin\frac{8\pi}{7}\right)$ $\alpha = -\frac{1}{2} + \frac{\sqrt{7}}{2}i$ Equating real and imaginary parts $\cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{8\pi}{7} = -\frac{1}{2}$ $\cos\frac{2\pi}{7} + \sin\frac{4\pi}{7} - \sin\frac{\pi}{7} = \frac{\sqrt{7}}{2}$ $\sin\frac{2\pi}{7} + \sin\frac{4\pi}{7} - \sin\frac{\pi}{7} = \frac{\sqrt{7}}{2}$	3 Marks Correct solution 2 Marks Makes significant progress 1 Mark Finds ω in mod-arg form